Machine learning of high dimensional data on a noisy quantum processor
نویسندگان
چکیده
Abstract Quantum kernel methods show promise for accelerating data analysis by efficiently learning relationships between input points that have been encoded into an exponentially large Hilbert space. While this technique has used successfully in small-scale experiments on synthetic datasets, the practical challenges of scaling to circuits noisy hardware not thoroughly addressed. Here, we present our findings from experimentally implementing a quantum classifier real high-dimensional taken domain cosmology using Google’s universal processor, Sycamore. We construct circuit ansatz preserves magnitudes typically otherwise vanish due growing space, and implement error mitigation specific task computing kernels near-term hardware. Our experiment utilizes 17 qubits classify uncompressed 67 dimensional resulting classification accuracy test set is comparable noiseless simulation.
منابع مشابه
the impact of computer-assisted language learning on achievement motivation of high school students
چکیده انگیزه دلیل اصلی رفتارهای ما است. به نظر می رسد انگیزه جزء جدایی ناپذیر فرایند یادگیری باشد. ارزش ذاتی موفقیت تمایل به پیشرفت را در یادگیرنده ایجاد میکند. به عبارت ساده این تمایل انگیزه پیشرفت نامیده میشود. انگیزه پیشرفت را میتوان در احساس یادگیرنده هنگام چالش با درس های مدرسه، لذت انجام فعالیت درسی، یا حس کشف پاسخ مشاهده کرد.حتی ممکن است انگیزه پیشرفت را در تلاش یادگیرنده برای جلب تایید...
Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics
Quantum control is valuable for various quantum technologies such as highfidelity gates for universal quantum computing, adaptive quantum-enhanced metrology, and ultra-cold atom manipulation. Although supervised machine learning and reinforcement learning are widely used for optimizing control parameters in classical systems, quantum control for parameter optimization is mainly pursued via grad...
متن کاملMachine Learning Methods for High-Dimensional Imbalanced Biomedical Data
Learning from high dimensional biomedical data attracts lots of attention recently. High dimensional biomedical data often suffer from the curse of dimensionality and have imbalanced class distributions. Both of these features of biomedical data, high dimensionality and imbalanced class distributions, are challenging for traditional machine learning methods and may affect the model performance....
متن کاملLearning high-dimensional data
Observations from real-world problems are often highdimensional vectors, i.e. made up of many variables. Learning methods, including artificial neural networks, often have difficulties to handle a relatively small number of high-dimensional data. In this paper, we show how concepts gained from our intuition on 2and 3dimensional data can be misleading when used in high-dimensional settings. When...
متن کاملTowards Machine Learning on the Automata Processor
A variety of applications employ ensemble learning models, using a collection of decision trees, to quickly and accurately classify an input based on its vector of features. In this paper, we discuss the implementation of such a method, namely Random Forests, as the first machine learning algorithm to be executed on the Automata Processor (AP). The AP is an upcoming reconfigurable co-processor ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: npj Quantum Information
سال: 2021
ISSN: ['2056-6387']
DOI: https://doi.org/10.1038/s41534-021-00498-9